EconPapers    
Economics at your fingertips  
 

Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed

A.L. Yaumi, M.Z. Abu Bakar and B.H. Hameed

Energy, 2017, vol. 138, issue C, 776-784

Abstract: Reusable nitrogen-doped carbon derived from coconut shell was prepared as a sustainable alternative for carbon dioxide (CO2) adsorption from gas streams. The procedure is based on carbonization and chemical activation with coconut shell, glucosamine, and KOH as the activating agent. The textural properties, as well as the fixed-bed adsorption and regeneration performance of the adsorbent were investigated using the fixed-bed adsorption column. The surface nature and properties of the adsorbent changed remarkably due to the surface modification that enhanced the adsorption process. The adsorbent showed a maximum CO2 uptake of 4.23 mmol/g at 30 °C and 1 bar. CO2 adsorption capacity increased with initial concentration and decreased with increases in temperature and flowrate. The adsorption capacity and physiochemical properties of the adsorbent were preserved after 20 adsorption–desorption cycles without significant loss in capacity. This finding suggests that the synthesized adsorbent is a good candidate for CO2 capture from post-fossil fuel combustion processes.

Keywords: Carbon dioxide capture; Adsorption; Coconut shell; Breakthrough curve; Glucosamine; Regeneration (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217313130
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:138:y:2017:i:c:p:776-784

DOI: 10.1016/j.energy.2017.07.130

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:776-784