EconPapers    
Economics at your fingertips  
 

A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction

Cong Wang, Hongli Zhang, Wenhui Fan and Ping Ma

Energy, 2017, vol. 138, issue C, 977-990

Abstract: The wind power time series always exhibits nonlinear and non-stationary features, which make it very difficult to predict accurately. In this paper, a new chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-sample entropy (EEMD-SE) and full-parameters continued fraction is proposed. In this proposed method, EEMD-SE technique is used to decompose original wind power series into a number of subsequences with obvious complexity differences. The forecasting model of each subsequence is created by full-parameters continued fraction. On the basis of the inverse difference quotient continued fraction, the full-parameters continued fraction model is proposed. The parameters of model are optimized by the primal dual state transition algorithm (PDSTA). The effectiveness of the proposed approach is demonstrated with practical hourly data of wind power generation in Xinjiang. A comprehensive error analysis is carried out to compare the performance with other approaches. The forecasting results show that forecast improvement is observed based on EEMD-SE and full-parameters continued fraction model.

Keywords: Wind power prediction; EEMD-SE; Full-parameters continued fraction; Primal dual state transition algorithm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217312902
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:138:y:2017:i:c:p:977-990

DOI: 10.1016/j.energy.2017.07.112

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:977-990