CO2 injection-induced fracturing in naturally fractured shale rocks
Lei Wang,
Bowen Yao,
Haojun Xie,
Philip H. Winterfeld,
Timothy J. Kneafsey,
Xiaolong Yin and
Yu-Shu Wu
Energy, 2017, vol. 139, issue C, 1094-1110
Abstract:
Niobrara shale cubes of 20 cm from Colorado were employed to investigate gas and supercritical CO2 injection-induced fracturing in naturally fractured caprocks of deep aquifers/depleted reservoirs and fractured shale reservoirs. Under tri-axial stresses, gas or supercritical CO2 was injected into the center of the cubes to induce fracturing. Real-time pressure and temperature, acoustic wave, pressure decay, fracture coloring, and gas fracturing were used to characterize the fracturing process and fracture morphology. Without pore pressure, CO2 injection-induced fracturing occurred and completed instantly, accompanied by an evident temperature drop. Strongly bonded fractures barely affected transverse fracture propagation, whereas weakly bonded or open fractures arrested the injected fluid first and then allowed it to generate new fractures perpendicular to the minimum horizontal stress. Breakdown pressures for cubes with preexisting fractures using gas and supercritical CO2 are much lower than both poroelastic predictions and slick-water fracturing pressure, and some are even lower than the minimum horizontal stress. This is attributed to unconformable preexisting fractures and the low viscosity of CO2. Moreover, decreasing tri-axial stress levels and increasing stress differences tend to lower the breakdown pressure. This study is instructive for understanding and tackling geomechanical issues related to CO2 geological storage and fracturing of shale reservoirs.
Keywords: Supercritical CO2; Injection-induced fracturing; Shale; Natural fracture; True tri-axial stress; Breakdown pressure (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217314081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:139:y:2017:i:c:p:1094-1110
DOI: 10.1016/j.energy.2017.08.031
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().