Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis
Guangfu Xu,
Ming Jia,
Yaopeng Li,
Maozhao Xie and
Wanhua Su
Energy, 2017, vol. 139, issue C, 247-261
Abstract:
By using a multi-dimensional computational fluid dynamics (CFD) code, the combustion process of a heavy-duty diesel engine with low temperature combustion (LTC) at different loads was investigated. Based on the optimization results, the potential of the late intake valve closing (LIVC) strategy coupled with boosted intake pressure, as well as the influence of fuel injection timing and exhaust gas recirculation (EGR) rate on the fuel consumption and emissions was discussed. The energy and exergy analyses were further performed using the first and second law of thermodynamics. The results indicate that when the LIVC strategy is applied, boosted intake pressure is needed to improve the thermal efficiency and reduce the soot emissions, especially at high load. However, retarding IVC timing leads to increasing exergy destruction as the global equivalence ratio remains constant. The exergy destruction at mid load is the lowest owing to the highest combustion temperature. At low and mid load, with advanced fuel injection, high EGR rate is required to reduce the nitrogen oxides (NOx) emissions. At high load, with retarded fuel injection, relatively lower EGR rate is required for reducing NOx emissions because of the retarded combustion phasing and more H2O and CO2 contained in the exhaust gases.
Keywords: Late intake valve closing (LIVC); Load range; Emissions; Thermal efficiency; Exergy analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217313774
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:139:y:2017:i:c:p:247-261
DOI: 10.1016/j.energy.2017.08.001
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().