EconPapers    
Economics at your fingertips  
 

Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis

Guangfu Xu, Ming Jia, Yaopeng Li, Maozhao Xie and Wanhua Su

Energy, 2017, vol. 139, issue C, 247-261

Abstract: By using a multi-dimensional computational fluid dynamics (CFD) code, the combustion process of a heavy-duty diesel engine with low temperature combustion (LTC) at different loads was investigated. Based on the optimization results, the potential of the late intake valve closing (LIVC) strategy coupled with boosted intake pressure, as well as the influence of fuel injection timing and exhaust gas recirculation (EGR) rate on the fuel consumption and emissions was discussed. The energy and exergy analyses were further performed using the first and second law of thermodynamics. The results indicate that when the LIVC strategy is applied, boosted intake pressure is needed to improve the thermal efficiency and reduce the soot emissions, especially at high load. However, retarding IVC timing leads to increasing exergy destruction as the global equivalence ratio remains constant. The exergy destruction at mid load is the lowest owing to the highest combustion temperature. At low and mid load, with advanced fuel injection, high EGR rate is required to reduce the nitrogen oxides (NOx) emissions. At high load, with retarded fuel injection, relatively lower EGR rate is required for reducing NOx emissions because of the retarded combustion phasing and more H2O and CO2 contained in the exhaust gases.

Keywords: Late intake valve closing (LIVC); Load range; Emissions; Thermal efficiency; Exergy analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217313774
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:139:y:2017:i:c:p:247-261

DOI: 10.1016/j.energy.2017.08.001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:247-261