Economics at your fingertips  

A framework for water and carbon footprint analysis of national electricity production scenarios

Mohammad A. Shaikh, Murat Kucukvar, Nuri Cihat Onat and Gokhan Kirkil

Energy, 2017, vol. 139, issue C, 406-421

Abstract: While carbon footprint reduction potential and energy security aspects of renewable and non-renewable resources are widely considered in energy policy, their effects on water resources are mostly overlooked. This research aims to develop a framework for water and carbon footprint analysis to estimate the current and future trends of water consumption and withdrawal by electricity production sectors for national energy development plans – alongside carbon emissions from various electricity sources. With this motivation, the Turkish electric power industry is selected as a case study and a decision support tool is developed to determine the water consumption, withdrawal and carbon emissions from energy mixes under three different scenarios, namely Business-As-Usual (BAU), Official Governmental Plan (OGP), and Renewable Energy-Focused Development Plan (REFDP). The results indicate that water is used substantially even by renewable resources, such as hydroelectricity and biomass, which are generally considered to be more environmental friendly than other energy sources. The average water consumption of the OGP energy mix in 2030 is estimated to be about 8.1% and 9.6% less than that of the BAU and REFDP scenarios, respectively. On the other hand, it is found that the water withdrawal of the energy mix in 2030 under the REFDP scenario is about 46.3% and 16.9% less than that of BAU and OGP scenarios. Carbon emissions from BAU are projected to be 24% higher than OGP and 39% higher than REFDP in 2030. Carbon emissions and water usage are strongly correlated in BAU scenario as compared with OGP and REFDP, thus carbon friendly energy sources will result in fewer water consumptions and withdrawals, particularly under REFDP.

Keywords: Water and carbon footprint; Electricity production; Scenario analysis; Energy policy; Decision support tool (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-04-21
Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:406-421