Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry
Zhiyi Li,
Alberto Cuoci,
Amsini Sadiki and
Alessandro Parente
Energy, 2017, vol. 139, issue C, 555-570
Abstract:
The present paper shows an in-depth numerical characterisation of the Jet in Hot Co-flow (JHC) configuration using the Reynolds Averaged Navier-Stokes (RANS) modelling with detailed chemistry. The JHC burner emulates the MILD combustion by means of a hot and diluted co-flow and high speed injection. The current investigation focuses on the effect of turbulent combustion models, turbulence model parameters, boundary conditions, multi-component molecular diffusion and kinetic mechanisms on the results. Results show that the approaches used to model the reaction fine structures, namely as Perfectly Stirred Reactors (PSR) or Plug Flow Reactors (PFR), do not have a major impact on the results. Similarly, increasing the complexity of the kinetic mechanism does not lead to major improvements on the numerical predictions. On the other hand, the inclusion of multi-component molecular diffusion helps increasing the prediction accuracy. Three different Eddy Dissipation Concept (EDC) model formulations are compared, showing their interaction with the choice of the C1ε constant in the k−ε turbulence model. Finally, two approaches are benchmarked for turbulence-chemistry interactions, the EDC model and the Partially Stirred Reactor (PaSR) model.
Keywords: Eddy dissipation concept; Jet in Hot Co-flow burner; MILD combustion; Partially stirred reactor; RANS simulation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217313142
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:139:y:2017:i:c:p:555-570
DOI: 10.1016/j.energy.2017.07.132
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().