Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration
Inkyu Lee,
Jinwoo Park and
Il Moon
Energy, 2017, vol. 140, issue P1, 106-115
Abstract:
This study aims to develop an efficient cryogenic energy storage (CES) process using the exergy from liquefied natural gas (LNG) regasification. While LNG has low internal energy, it has high exergy because of its cryogenic characteristics, and much of this exergy is wasted in the process of regasification. Thus, this work focuses on the recovery of LNG cold exergy to store cryogenic energy using air as a working fluid. The cold exergy of LNG is transferred in two forms: cold transfer by heat exchange to liquefy air, and shaft work transfer by direct expansion of LNG to compress the air. Thermodynamic analysis of the proposed process is carried out in three exergy flow steps: the LNG regasification step, the air liquefaction step, and the air expansion step. In addition, the proposed system has an advantage which system can store and release the energy simultaneously. Therefore, daily produced energy by CES system is more than double compare to the most recent contributions that have divided operation modes for energy storage and release. This study not only proposes an efficient energy storage process that can generate power flexibly but also highlights further possibilities for performance enhancement by thermodynamic analysis.
Keywords: Process design; Cryogenic energy storage; LNG regasification; Process integration; Exergy analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217314329
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:140:y:2017:i:p1:p:106-115
DOI: 10.1016/j.energy.2017.08.054
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().