EconPapers    
Economics at your fingertips  
 

Instantaneous monitoring of local fuel concentration in a liquid hydrocarbon-fueled flame using a LIBS plug

J.H. Kim, S.H. Lee, H. Do and J.J. Yoh

Energy, 2017, vol. 140, issue P1, 18-26

Abstract: A portable device composed of photodiodes and bandpass filters was developed to measure local fuel concentration in a liquid hydrocarbon-fueled spray flame. The plasma emission spectra in and around the flame were selectively captured using such simplified device or plug instead of using a laboratory standard laser-induced breakdown spectroscopy (LIBS) system consisting of an ICCD and a spectrometer. The hydrogen (656 nm) and oxygen (777 nm) atomic lines were selected to determine the fuel concentration in atmospheric pressure. The H/O signal intensity ratio was found to be a strong function of the fuel concentration, and thus a calibration curve for the concentration measurements was established and validated using conventional LIBS. The proposed scheme to measure the local equivalence ratio of spray flames using a bundled layout of multiple LIBS plugs alongside the combustor wall may offer simple and highly robust diagnostics, especially under the harsh combustion conditions within air-breathing engines.

Keywords: Laser-induced plasma; Equivalence ratio; Plasma emission; Spray flame (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217314573
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:140:y:2017:i:p1:p:18-26

DOI: 10.1016/j.energy.2017.08.081

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:18-26