Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes
Yang Cao,
Boshu He,
Guangchao Ding,
Liangbin Su and
Zhipeng Duan
Energy, 2017, vol. 140, issue P1, 47-57
Abstract:
Two power generation systems composed of the chemical looping air separation (CLAS) technology and the integrated gasification combined cycle (IGCC) with CO2 capture are conceptually presented, thermodynamically analyzed and compared. Different CO2 capture approaches including the pre-combustion with polyethylene glycol dimethyl ether (PGDE) and the post-combustion with monoethanolamine (MEA) are respectively adopted in the two systems. Blocked energy losses and exergy destructions are calculated to investigate the overall efficiencies of the systems. Sensitivity analyses are carried out to investigate the effects of different operating parameters including the oxygen to coal mass ratio (ROC), the steam to coal mass ratio (RSC) and the temperature of the reduction reactor (TRR) on the energy efficiencies (ηen) and exergy efficiencies (ηex) of the two systems. The maximum energy losses and exergy destructions are found in the CO2 capture units. ROC of 0.75, RSC of 0.06 and TRR of 850 °C are recommended as the optimum operation parameters based on the sensitivity analyses. With the optimized parameters, the energy and exergy efficiencies are predicted to be 37.36% and 34.50% for the system with post-combustion CO2 capture, while 38.67% and 36.19% for the system with pre-combustion CO2 capture.
Keywords: Energy; Exergy; Chemical looping air separation (CLAS); Integrated gasification combined cycle (IGCC); CO2 capture (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217314226
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:140:y:2017:i:p1:p:47-57
DOI: 10.1016/j.energy.2017.08.044
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().