EconPapers    
Economics at your fingertips  
 

Energy recovery and hygienic water production from wastewater using an innovative integrated microbial fuel cell–membrane separation process

S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour and K. Bahrami

Energy, 2017, vol. 141, issue C, 1350-1362

Abstract: In this study, wastewater treatment was destined for generation of electricity and hygienic water by an innovative integrated microbial fuel cell – membrane separation process (MFC-MSP). An optimal antifouling nanofiltration membrane (blended with O-carboxymethyl chitosan bound Fe3O4 magnetic nanoparticles (CCFe3O4 NPs)), an antifouling ultrafiltration (UF) membrane (blended with polycitrate-alumoxane nanoparticle (PC-A)) and a high efficiency proton exchange membranes were applied in MSP and MFC processes. Firstly, the performance of MFC unit under different operating conditions of reaction time (RT), mixed liquor suspended solid (MLSS) concentration and influent chemical oxygen demand (COD) concentration was investigated in terms of COD removal efficiency and power generation for synthetic dairy wastewater treatment. The experiments were modeled using response surface methodology (RSM). The results indicated that by increasing in RT and CODin concentration, the COD removal was decreased. Also, the high concentration of MLSS in anodic chamber led to high COD removal efficiency. By increasing of MLSS beyond 3000 mg/L, the maximum power generation was decreased that reveals an adverse impact of biofouling on membrane performance. After primary treatment in anodic chamber of MFC at optimum condition, the anodic chamber effluent was passed through the membranes in two modes, direct nanofiltration (NF) membrane and UF-NF membranes in series. The results indicated that the UF membrane alleviated the organic loading of NF membrane by 72% relative to the direct NF filtration. The permeation flux shows a sustain performance of the NF when is coupled with UF membrane.a.

Keywords: Microbial fuel cell; Proton exchange membrane; Electricity production; Nanofiltration; Ultrafiltration (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217319060
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:1350-1362

DOI: 10.1016/j.energy.2017.11.057

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1350-1362