Optimal factors estimation for diesel/methanol engines changing methanol injection timing and inlet air temperature
Horng-Wen Wu,
Chen-Ming Fan,
Jian-Yi He and
Tzu-Ting Hsu
Energy, 2017, vol. 141, issue C, 1819-1828
Abstract:
Methanol has been injected at the intake port with heated inlet air in a diesel engine. In the meantime, the Taguchi methodology was adopted to estimate the optimal methanol-energy-share ratio, methanol injection timing, and inlet air temperature. The injection timing and the quantity of methanol were controlled by an ECU (electronic control unit) on an electronic injector. The inlet air temperature was raised by an electric heater. The authors estimate the optimal combination of factors for larger brake thermal efficiency (ηb), smaller smoke, NOX, HC and CO pollutant emissions for different loads. In addition, net heat release rate is obtained by the measured in-cylinder pressure data. Comparison of between the optimal combination of factors and original conventional diesel engine is made byηb, smoke, NOX, HC, CO and net heat release rate. Carrying out the confirmation tests can show that the predictions of the Taguchi methodology agree with the confirmation tests in the 95% confidence level. For the optimum combinations of factors, the maximum decrease percentage is 41.5% for smoke emission, 61.7% for NOX, 8.6% for HC emission, and 32.4% for CO emission.
Keywords: Optimal factors estimation; A diesel/methanol engine; Taguchi method; Methanol-energy-share ratio; Methanol injection timing; Inlet air temperature (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217319813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:1819-1828
DOI: 10.1016/j.energy.2017.11.123
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().