EconPapers    
Economics at your fingertips  
 

Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry

Hussam Jouhara, Sulaiman Almahmoud, Amisha Chauhan, Bertrand Delpech, Giuseppe Bianchi, Savvas A. Tassou, Rocio Llera, Francisco Lago and Juan José Arribas

Energy, 2017, vol. 141, issue C, 1928-1939

Abstract: Most of the energy demand in the steel industry is used for heating purposes. The recovery of residual heat contributes to significant reductions in both production costs and greenhouse gas emissions. In this paper, the design, manufacture and testing of an innovative heat recovery system based on a Flat Heat Pipe heat exchanger (FHP) is described. The FHP system consists of stainless steel heat pipes linked by a bottom header and a shell and tube top header. The thermal performance of the FHP was investigated both in the laboratory and on an industrial plant and the energy recovered and the working temperatures of the FHP are reported. A theoretical modelling tool has been built to predict the performance of the device in the laboratory. Reasonable agreement has been obtained between experimental and theoretical results. It is concluded from the results that the FHP is an innovative high efficiency technology for waste heat recovery from such industrial applications.

Keywords: Flat heat pipe; Heat exchanger; Waste heat recovery (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217318479
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:1928-1939

DOI: 10.1016/j.energy.2017.10.142

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:1928-1939