Multi-period flexibility forecast for low voltage prosumers
Rui Pinto,
Ricardo J. Bessa and
Manuel A. Matos
Energy, 2017, vol. 141, issue C, 2251-2263
Abstract:
Near-future electric distribution grids operation will have to rely on demand-side flexibility, both by implementation of demand response strategies and by taking advantage of the intelligent management of increasingly common small-scale energy storage. The Home energy management system (HEMS), installed at low voltage residential clients, will play a crucial role on the flexibility provision to both system operators and market players like aggregators. Modeling and forecasting multi-period flexibility from residential prosumers, such as battery storage and electric water heater, while complying with internal constraints (comfort levels, data privacy) and uncertainty is a complex task. This papers describes a computational method that is capable of efficiently learn and define the feasibility flexibility space from controllable resources connected to a HEMS. An Evolutionary Particle Swarm Optimization (EPSO) algorithm is adopted and reshaped to derive a set of feasible temporal trajectories for the residential net-load, considering storage, flexible appliances, and predefined costumer preferences, as well as load and photovoltaic (PV) forecast uncertainty. A support vector data description (SVDD) algorithm is used to build models capable of classifying feasible and non-feasible HEMS operating trajectories upon request from an optimization/control algorithm operated by a DSO or market player.
Keywords: Renewable energy; Multi-temporal; Flexibility; Forecast; Storage; Uncertainty; Prosumers (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217320005
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:2251-2263
DOI: 10.1016/j.energy.2017.11.142
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().