An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system
Rui Wang,
Guozheng Li,
Mengjun Ming,
Guohua Wu and
Ling Wang
Energy, 2017, vol. 141, issue C, 2288-2299
Abstract:
Hybrid renewable energy system (HRES) has continuously been demonstrated effective in making use of renewable energies, e.g., solar, wind. This study proposes a novel multi-objective model and algorithm for optimizing the size of a typical stand-alone HRES that is composed of photovoltaic (PV) panels, wind turbines, battery banks and diesels. Notably, the proposed model considers minimization of annualized system cost (economy), loss of power supply probability (reliability) and greenhouse gas emission (environment), and enables a decision maker to optimize both the number and the type of PV panel, wind turbine, battery and diesel generator as well as the PV panel installation angle, the wind turbine installation height. To effectively solve the model, in particular, dealing with mixed types of decision variables including integer, real and categorical values, the non-dominated sorting algorithm II (NSGA-II) embedded with a re-ranking based genetic operators is proposed. Lastly, a case study is presented to demonstrate the effectiveness and efficiency of the proposed model and algorithm.
Keywords: Hybrid renewable energy system; Evolutionary algorithms; Multi objective optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217319436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:2288-2299
DOI: 10.1016/j.energy.2017.11.085
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().