EconPapers    
Economics at your fingertips  
 

CO2 mineral sequestration integrated with water-gas shift reaction

Ron Zevenhoven and Mikael Virtanen

Energy, 2017, vol. 141, issue C, 2484-2489

Abstract: Mineralisation of CO2 using magnesium silicate rock offers a large carbon and storage (CCS) potential with documented advantages compared to underground storage of pure CO2. Work in Finland has resulted in what is referred to as “the ÅA route”, involving stepwise carbonation of serpentinite rock. Magnesium is extracted and converted into magnesium hydroxide (Mg(OH)2), which is carbonated in a pressurised fluidised bed (PFB) reactor at elevated pressure and temperature. The combined operation of a water-shift reaction and carbonation of Mg(OH)2 is addressed in this paper for (coal) gasification syngas and, in more detail, blast furnace top gas. Water produced during the carbonation step can drive the water-gas shift reaction. HSC and Aspen Plus are used for thermodynamic equilibrium product gas and solid products composition analysis. Optimal process conditions appear to be 400–450 °C, at a pressure of 40 bar or higher, for acceptable degrees of conversion. This is partly the result of the water-gas shift reaction equilibrium moving to the CO side at higher temperatures, besides increased calcination of Mg(OH)2 to much less reactive MgO. An energy requirement assessment for blast furnace top gas processing shows that power input requirements may be more than compensated for by waste heat.

Keywords: CO2 sequestration; Mineralisation; Magnesium silicate; Water-gas shift reaction (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217307119
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:2484-2489

DOI: 10.1016/j.energy.2017.04.143

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2484-2489