Water-energy and GHG nexus assessment of alternative heat recovery options in industry: A case study on electric steelmaking in Europe
Damiana Chinese,
Maurizio Santin and
Onorio Saro
Energy, 2017, vol. 141, issue C, 2670-2687
Abstract:
In the last few years, the water-energy nexus concept has emerged as a global issue. However, studies on European countries are relatively few, and often focused on agriculture. Cooling purposes represent the main part of industrial water demand, and waste-heat recovery is a main strategy to improve resource efficiency. This paper presents a real case study of low-temperature waste-heat recovery in an electric steelmaking industry and evaluates the impact of feasible interventions on primary energy and water consumption, as well as on CO2 equivalent emissions. Based on a Europe wide review of energy and water prices, of energy sources and corresponding resource efficiency indicators, a Monte Carlo model was developed to undertake a generalization of the case study to the EU-15. It was found that solutions with the lowest primary energy demand and the lowest CO2 equivalent emissions demonstrate the greatest water footprint. This is the case of some southern European countries, where heat recovery projects with the highest water intensity are feasible due to high electricity and low water prices. As increasing carbon prices may exacerbate this phenomenon, inducing a switch to water intensive technologies, incentives to carbon emission reduction should be carefully designed.
Keywords: Water-energy nexus; Industrial cooling systems; Absorption cooling; ORC; Water footprint of electricity generation; Monte carlo simulation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217315657
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:2670-2687
DOI: 10.1016/j.energy.2017.09.043
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().