Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center
Hua Chen,
Wen-long Cheng,
Wei-wei Zhang,
Yu-hang Peng and
Li-jia Jiang
Energy, 2017, vol. 141, issue C, 304-315
Abstract:
To improve the energy efficiency of supercomputer center, a novel energy system aimed at enhancing cooling efficiency while reusing waste heat is proposed. The energy system integrates a plug-type spray cooling system with a two-stage absorption chiller driven by spray cooling waste heat. Overall modeling of integrated energy system is analyzed based on spray cooling model and absorption chiller model. Energy saving evaluation is conducted based on Dawning 5000A supercomputer in China. It is found that the novel energy system is much efficient than the original energy system in all seasons. The energy saving effect is highly affected by inlet temperature of spray cooling. With the increase of inlet temperature, the spray cooling capacity decreases while the absorption cooling capacity increases. Thus, an optimal inlet temperature of 55 °C is obtained at which the lowest cooling power consumption, lowest power utilization effectiveness (PUE) and highest energy saving efficiency (ESE) can be achieved. Taken Dawning 5000A supercomputer for example, the system can achieve ESE as high as 49% and PUE within best practice scenario of 1.44. At the optimal design, cooling power consumption only accounts for 16%. Power consumption devoted to running the IT equipment is improved from 60% to 67%.
Keywords: Energy saving; Supercomputer; Spray cooling; Multi-nozzle array; Absorption chiller; Energy efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217316080
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:304-315
DOI: 10.1016/j.energy.2017.09.089
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().