Photothermal conversion characteristics of gold nanoparticles under different filter conditions
H. Zhang,
H. Yang,
H.J. Chen,
X. Du,
D. Wen and
H. Wu
Energy, 2017, vol. 141, issue C, 32-39
Abstract:
In this article, plasmonic nanopaerticles (PNP) were used to improve the solar thermal conversion efficiency and the abortion prosperity under eight different wavelength spectrum was compared. Gold nanoparticles (GNP) is synthesized through an improved citrate-reduction method, which was used to illustrate the photo-thermal conversion of PNPs under a solar simulator with eight filters. Experimental results showed that the best light intensities at wavelength of 710 nm could reach 0.004 W/cm2 when applied to two suns. With the increase of the irradiation time, the GNP temperature increased linearly and the temperature could be increased by 3.5 K within 300 s. In addition, there were no infrared, no visible light, and no UV filters utilized to compare GNP photothermal conversion efficiencies in three main spectrum regions. As eight filters were applied in the current experiment, more specified wavelength spectrum and longer time need to be tested for the purpose of optimisation.
Keywords: Plasmonic nanoparticles; Wavelength spectrum; Photo-thermal conversion efficiency; Light filter (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217315554
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:32-39
DOI: 10.1016/j.energy.2017.09.059
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().