Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization
Daegi Kim,
Seyong Park and
Ki Young Park
Energy, 2017, vol. 141, issue C, 598-602
Abstract:
Hydrothermal carbonization is an attractive thermochemical method for upgrading organic waste and biomass. Hydrothermal carbonization's improvement of the upgrading and dewatering of fuel mixed with sewage sludge and low rank coal as peat was evaluated at temperatures ranging from 200 to 350 °C and at 60 min reaction time. The moisture content of mixed fuel (50:50 wt %) of sludge: peat was approximately 80.7%. Hydrothermal carbonization can improve sludge with a high moisture content as well as the mixed fuels increasing the latter's calorific value by reducing the hydrogen and oxygen contents of the solid products. Therefore, after the hydrothermal carbonization, the aromatic H/C and O/C ratios decreased due to of the chemical conversion. These results show that the hydrothermal carbonization process can be advantageous for improving the properties of mixed fuel to reusing and upgrading sludge and low rank coal. Upgraded fuel mixed with sewage sludge and peat is characteristically resistant to change in the carbon-functional groups, and their properties as determined via Fourier transform infrared (FTIR) spectroscopy, are discussed herein.
Keywords: Sludge; Peat; Fuel mixed; Biochar production; Hydrothermal carbonization; Renewable solid fuel (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421731633X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:598-602
DOI: 10.1016/j.energy.2017.09.113
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().