EconPapers    
Economics at your fingertips  
 

High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures

Ahmed A. Askalany, Sebastian-Johannes Ernst, Philipp P.C. Hügenell, Hans-Jörg Bart, Stefan K. Henninger and Ahmed S. Alsaman

Energy, 2017, vol. 141, issue C, 782-791

Abstract: In this research article a new modified adsorbent has been presented to be used in thermally driven adsorption systems for renewable energy applications. Bentonite is introduced as a cheap adsorbent with high potential for use in heat pumps or chillers driven by renewable energy. A simple acid activation procedure increases the inner surface of the material and also enhances the water adsorption capacity markedly. The raw bentonite is activated with different concentrations (0.2, 0.4, 0.6 mol L−1) of HCl. FT-IR, XRD, N2 adsorption, water adsorption and heat capacity measurements have been carried out for the raw and HCl activated bentonite. The acid activation process increased the surface area of the bentonite from 64 m2 g−1 to a level of 500 m2 g−1. In that respect the maximum adsorption capacity has markedly increased by the acid activation. Experimental and theoretical studies for the adsorption isotherms and kinetics at different adsorption temperatures of water vapor onto 0.6 HCl treated bentonite have been conducted. A simulation for an adsorption cooling system employing treated bentonite has been presented. The performance of the modeled system has been also studied to be driven by low grade heat source temperatures at different operating conditions.

Keywords: Adsorption; Bentonite; Adsorption heat pump; Thermal heat storage (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217313658
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:782-791

DOI: 10.1016/j.energy.2017.07.171

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:782-791