EconPapers    
Economics at your fingertips  
 

An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by Diesel-ethanol-biodiesel blends

Abhishek Paul, Rajsekhar Panua and Durbadal Debroy

Energy, 2017, vol. 141, issue C, 839-852

Abstract: The present work is an attempt to conduct a complete analysis of a CI engine subjected to a number of blends of Diesel-ethanol and Pongamia piñata methyl ester (PPME). In this study, the PPME percentage is fixed at 50% and ethanol percentage is increased from 5% to 20% with intervals of 5%, thus reducing the diesel participation. A comprehensive analysis of performance, exergy, combustion and emission characteristics was carried out, which lead to a conclusion that the D35E15B50 blend with 15% ethanol showed best engine performance characteristics with 21.17% increase in brake thermal efficiency and 4.61% decrease in BSEC at full load. The combustion analysis also revealed increase in cylinder pressure and heat release rate indicating improvement in combustion condition for the above-mentioned blend. The D35E15B50 blend also showed a substantial improvement in unburned hydrocarbon and carbon monoxide emissions but it was penalized with a marginal increase in NOx emission. The exergy analysis showed a 25.64% increase in exergetic efficiency and 22.02% decrease in exergy destruction rate and 21.06% decrease in entropy generation rate at full load condition for D35E15B50 blend. The tradeoff study involving BSEC, NOx emission and sustainability index indicated a higher sustainability prospect for the D35E15B50.

Keywords: Exergy destruction rate; Sustainability index; Entropy diesel-ethanol-biodiesel; Diesel engine (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217316596
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:839-852

DOI: 10.1016/j.energy.2017.09.137

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:839-852