EconPapers    
Economics at your fingertips  
 

Total Site Heat Integration: Utility selection and optimisation using cost and exergy derivative analysis

Amir H. Tarighaleslami, Timothy G. Walmsley, Martin J. Atkins, Michael R.W. Walmsley and James R. Neale

Energy, 2017, vol. 141, issue C, 949-963

Abstract: This paper presents a new Total Site Heat Integration utility temperature selection and optimisation method that can optimise both non-isothermal (e.g. hot water) and isothermal (e.g. steam) utilities. None of the existing methods addresses both non-isothermal and isothermal utility selection and optimisation incorporated in a single procedure. The optimisation affects heat recovery, the number of heat exchangers in Total Site Heat Exchanger Network, heat transfer area, exergy destruction (ED), Utility Cost (UC), Annualised Capital Cost (CC), and Total Annualised Cost (TC). Three optimisation parameters, UC, ED, and TC have been incorporated into a derivative based optimisation procedure where derivatives are minimised sequentially and iteratively based on the specified approach. The new optimisation procedure has been carried out for three different approaches as the combinations of optimisation parameters based on the created derivative map. The merits of the new method have been illustrated using three case studies. These case studies represent a diverse range of processing types and temperatures. Results for the case studies suggest the best derivative optimisation approach is to first optimise UC in combination with ED and then optimise TC. For this approach, TC reductions between 0.6 and 4.6% for different case studies and scenarios are achieved.

Keywords: Total Site Heat Integration; Optimisation; Utility temperature; Exergy destruction; Total annualised cost; Utility cost (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217316699
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:141:y:2017:i:c:p:949-963

DOI: 10.1016/j.energy.2017.09.148

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:949-963