EconPapers    
Economics at your fingertips  
 

Evaluation of data-driven models for predicting solar photovoltaics power output

Salim Moslehi, T. Agami Reddy and Srinivas Katipamula

Energy, 2018, vol. 142, issue C, 1057-1065

Abstract: This research was undertaken to evaluate different inverse models for predicting power output of solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated whether PV power output prediction accuracy can be improved if module/cell temperature was measured in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar irradiation is not measured on the plane of array but only on a horizontal surface. We have also investigated the significance of different independent or regressor variables, such as wind velocity and incident angle modifier in predicting PV power output and cell temperature. We found wind velocity and module temperature measurements are too unreliable for use in inverse solar PV models. The inverse regression model forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are used. Depending on what type of measured climatic and PV performance data is available, different scenarios have been identified and the appropriate modeling pathways have been proposed. These models are to be implemented on a controller platform for optimum operational planning of microgrids and integrated energy systems.

Keywords: Solar photovoltaics; PV power prediction; Data-driven modeling; Renewable energy; Sustainable energy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217315645
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:142:y:2018:i:c:p:1057-1065

DOI: 10.1016/j.energy.2017.09.042

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:1057-1065