EconPapers    
Economics at your fingertips  
 

Utilizing the scavenge air cooling in improving the performance of marine diesel engine waste heat recovery systems

Mohamed T. Mito, Mohamed A. Teamah, Wael M. El-Maghlany and Ali I. Shehata

Energy, 2018, vol. 142, issue C, 264-276

Abstract: This paper aims at improving power generation efficiency of marine diesel engine waste heat recovery systems. It presents a novel technique of integrating the heat rejected in the scavenge air cooling process and the exhaust gas in operating a single and dual pressure steam power generation cycles. Moreover, a thermodynamic analysis of proposed systems was performed to identify the optimum operating parameters for achieving an overall efficiency improvement. The analysis considered the exergy destruction in each component and the energy/exergy efficiencies. A performance analysis was conducted to assess applicability and power output at off design conditions. An evaluation of achieved improvements by suggested designs was presented from both an economical and environmental standpoint. In conclusion, results show that, the recommended cycle increased overall efficiency improvement from 2.8% for the conventional system to 5.1%, with an additional power output of 1210 kW, representing 9.7% of the engine's power. Also, exergy efficiency increased significantly by 6.6% when using the presented system. Furthermore, the waste heat recovery system attained a reduction in fuel consumption of 1538 Ton/year, reducing carbon dioxide emission by 4790 Ton/year.

Keywords: Marine diesel engine; WHR; Ship power plant; Rankine cycle; Emission reduction; Energy management (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217317085
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:142:y:2018:i:c:p:264-276

DOI: 10.1016/j.energy.2017.10.039

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:264-276