Conventional and advanced exergy analysis of solar flat plate air collectors
Arsham Mortazavi and
Mehran Ameri
Energy, 2018, vol. 142, issue C, 277-288
Abstract:
In this study, conventional and advanced exergy analyses have been executed on a simple flat plate collector and a flat plate collector with thin metal sheet. Mathematical models have been designed using energy balance equations developed for each component. The results of the present work are well in agreement with those of previous researchers. The effects of Reynolds number, channel depth and radiation intensity on the exergy annihilation of each component and process were investigated by conventional exergy analysis. To execute the advanced exergy analysis, the thermodynamic process was modified by the authors to comply with the problem. Using these two analyses, the decision maker is provided with the ability to determine the source and amount of each exergy annihilation; therefore, a rather realistic measure is achieved to potentially improve the efficiency. The results of conventional analysis indicated that the absorber plate-sun exergy destruction has the largest portion among all annihilations while the exergy loss from insulation has the smallest. The results of advanced exergy analysis revealed that most of the exergy annihilation in the absorber plate is unavoidable and endogenous whereas in the glass cover, a large amount of the exergy destruction can be avoided.
Keywords: Advanced exergy analysis; Conventional exergy analysis; Solar air collector; Exergy destruction; Efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217317048
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:142:y:2018:i:c:p:277-288
DOI: 10.1016/j.energy.2017.10.035
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().