Economics at your fingertips  

Acclimation and the response of hourly electricity loads to meteorological variables

Yaoping Wang and Jeffrey M. Bielicki

Energy, 2018, vol. 142, issue C, 473-485

Abstract: Short-term electricity load forecasts and long-term projections of climate change impacts can benefit from understanding the relationship between electricity demand and meteorological conditions. We developed and applied a segmented regression technique to more than ten years of hourly electricity load data to estimate this relationship in two transmission zones in the United States that vary in their spatial extent and population. We empirically determined reference temperatures for cooling- and heating-degree hours. These reference temperatures differ from each other for every hour of the day and vary in accordance with the ambient temperature, which affect electricity loads induced for heating and cooling. Past temperatures and relative humidity have a significant influence on electricity load, and we identified the existence of threshold temperatures for the effect of relative humidity. Our results suggest that accurate predictions of the electricity loads should incorporate a ∼7 °C “comfort zone” where electricity load is less sensitive to temperature than elsewhere in the relationship, include the dependence on relative humidity (which can be negative), and incorporate a path dependence of prior days' temperatures.

Keywords: Heating degree days; Cooling degree days; Electricity load; Weather; Segmented regression (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-05-05
Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:473-485