Load forecasting under changing climatic conditions for the city of Sydney, Australia
T. Ahmed,
D.H. Vu,
K.M. Muttaqi and
A.P. Agalgaonkar
Energy, 2018, vol. 142, issue C, 911-919
Abstract:
In the current context, climate change has become an unequivocal phenomenon. Although it primarily encompasses change in temperature, nevertheless other weather variables such as rainfall, wind speed, evaporation and humidity can also be affected as a result of climate change. Addressing the impacts of climate change on electricity demand is essential for predicting the future demand. For example, cooling and heating requirements change significantly with respect to climate change that may result to the change in electricity load demand. In this paper, a backward elimination based multiple regression approach is proposed for analyzing the influence of climatic variables on load forecasting. A correlation analysis has been carried out using Pearson’s correlation coefficient to examine the interdependency between different climatic variables in the context of Sydney, one of the most densely populated cities in Australia. Regression based analysis has been performed to examine the relationship between per capita electricity demand and associated climatic variables. ‘Degree Days’ concept has been utilized to determine balance point temperature. Backward elimination based multiple regression is used to exclude non-significant climatic variables and evaluate the sensitivity of significant variables related to the load demand. Average change in future per capita electricity demand has been predicted using the proposed approach for the city of Sydney, Australia. Results indicate that the demand for Sydney will increase by 6% by 2030.
Keywords: Climate change; Electricity demand forecasting; Power system planning; Regression analysis; Weather variables (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217317759
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:142:y:2018:i:c:p:911-919
DOI: 10.1016/j.energy.2017.10.070
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().