EconPapers    
Economics at your fingertips  
 

Generalized pinch point design method of subcritical-supercritical organic Rankine cycle for maximum heat recovery

Jahar Sarkar

Energy, 2018, vol. 143, issue C, 141-150

Abstract: Novel methodology for pinch point design and optimization of subcritical and supercritical organic Rankine cycles is proposed for maximum heat recovery. The proposed method is able to predict pinch point locations in both evaporator and condenser simultaneously. As a main advantage, both evaporator and condenser pressures can be optimized simultaneously by optimizing only working fluid mass flow rate to get maximum net work output or heat recovery efficiency for given heating fluid and cooling fluid inlet conditions using selected working fluids. Working fluids have been selected based on thermodynamic and environmental criteria and compared based on various performance parameters (net work output, thermal efficiency, heat recovery efficiency, irreversibility, exergetic efficiency, turbine size parameter and heat transfer requirement). The present method seems to be better than previous pinch point design methods as it optimize the cycle by considering both source and sink. At optimum operation, ammonia is best in terms of lower mass flow rate requirement, higher exergetic efficiency, lower turbine staging and turbine size, whereas, isopentane is best in terms of higher power output and heat recovery efficiency. Novel contour plots are presented as well to select optimum ORC design parameters for available heat source and sink.

Keywords: Waste heat recovery; Organic Rankine cycle; Pinch point temperature difference; Pinch analysis; Exergy destruction; Optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217317632
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:143:y:2018:i:c:p:141-150

DOI: 10.1016/j.energy.2017.10.057

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:141-150