EconPapers    
Economics at your fingertips  
 

Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration

Penglei Ma, Yong Wang, Yudong Xie and Jianhua Zhang

Energy, 2018, vol. 143, issue C, 273-283

Abstract: The generators using oscillating foil to extract tidal energy have obvious advantages in shallow water. To get rid of the complicated control system, we proposed a hydraulic system to couple dual foils and realize the self-sustained oscillation motion of the foil. The coupling equations related to the foils' motion and hydrodynamic are established. Computations are performed using the software Fluent with a NACA0015 foil. A User Defined Function is compiled for iteration. The classical Runge-Kutta method is employed to compute the displacement and moving velocity. Computation results demonstrate that the hydraulic coupling system realizes well the self-sustained oscillation motion of foil instead of external control. The response of the coupling system is independent of the initial pitching angle. The damping coefficients have a significant effect on the response of coupling system. The response of coupling system, oscillation amplitude and frequency, declines with the increasing of damping coefficient, especially at relatively low damping coefficient. The energy consumption of pitching motion most appears in the stage of angle decrease. The evolutions of time-averaged power coefficient and energy harvesting efficiency versus damping coefficient are quite similar to that of the oscillation amplitude and frequency.

Keywords: Oscillating foil; Hydraulic system; Self-sustained; Dual foils; Parallel configuration; Energy harvesting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217318467
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:143:y:2018:i:c:p:273-283

DOI: 10.1016/j.energy.2017.10.141

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:273-283