EconPapers    
Economics at your fingertips  
 

One-day performance evaluation of photovoltaic-thermoelectric hybrid system

Ershuai Yin, Qiang Li and Yimin Xuan

Energy, 2018, vol. 143, issue C, 337-346

Abstract: Almost all of the researches about the photovoltaic-thermoelectric (PV-TE) hybrid system focus on the steady-state performance assuming solar irradiance is constant (1000 W/m2) and ignoring the influence of changing solar radiation with time. In this paper, a theoretical model for obtaining the coupling system one-day performance is established. Detailed one-day changes in coupling system temperatures, powers, efficiencies are revealed. The thermal concentration ratio is discussed and is optimized to increase the one-day average efficiency. Influences of photovoltaic efficiency temperature coefficient, thermoelectric Z value, water cooling mass and velocity are discussed. The one-day performances of pure PV and PV-TE hybrid system are compared. The results show that the coupling system can obtain the highest one-day average efficiency by optimizing the thermal concentration ratio. The highest one-day average efficiency of the hybrid system decrease with the rise of the photovoltaic temperature coefficient and increase with the thermoelectric Z value augmenting. The mass of the cooling water has a remarkable positive effect on the hybrid system performance while the impact of the cooling water velocity is tiny. The hybrid system one-day capability is preferable to the pure PV system when the thermoelectric Z value is large or the photovoltaic temperature coefficient is small.

Keywords: Photovoltaic-thermoelectric hybrid system; Performance evaluation; One-day performance; Solar energy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217318613
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:143:y:2018:i:c:p:337-346

DOI: 10.1016/j.energy.2017.11.011

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:337-346