EconPapers    
Economics at your fingertips  
 

Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures

Zhijun Zhao, Xiao Xing, Zhigang Tang, Yong Zheng, Weiyang Fei, Xiangfeng Liang, E. Ataeivarjovi and Dong Guo

Energy, 2018, vol. 143, issue C, 35-42

Abstract: CO2 capture with solvent-based process is known as a promising technology for controlling the global warming. In this work, the constant-volume method was used to investigate CO2 solubility in DMC, ionic liquid of [Omim][BF4], and their mixtures from 298.15 to 328.15 K under pressures up to about 3 MPa. The COSMO-RS model was used to predict the Henry's constants and the vapor pressures of DMC in the mixtures. The experimental results showed the CO2 solubility in [Omim][BF4] is higher than DMC at 318.15–328.15 K and adding [Omim][BF4] into DMC can decrease the viscosity compared to the pure [Omim][BF4]. Besides, the COSMO-RS simulation results showed the Henry's constants in the mixtures increases with the decreasing mass ratio of [Omim][BF4] which are consistent with experimental values and the vapor pressures of DMC in the mixtures decreases with the increasing mass ratio of [Omim][BF4]. Moreover, the activation energy (Ea) predicted from viscosity showed the higher viscosity mean the larger Ea and the larger Ea indicate the higher CO2 solubility in these solvents. Finally, the mixtures of DMC and [Omim][BF4] may be used as promising physical solvents to capture CO2 with high partial pressures, which combine the advantages of organic solvents and ionic liquids.

Keywords: CO2 capture; Carbonates; Ionic liquids; Physical absorption; Simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217318224
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:143:y:2018:i:c:p:35-42

DOI: 10.1016/j.energy.2017.10.116

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:35-42