Detailed entropy generation analysis of a Wells turbine using the variation of the blade thickness
Mohammad Nazeryan and
Esmail Lakzian
Energy, 2018, vol. 143, issue C, 385-405
Abstract:
The inherent disadvantages, due to the narrow operational range and low efficiency of Wells turbine, are investigated based on aerodynamic and entropy generation analysis. To overcome these issues, the effects of blade thickness on the performance of a Wells turbine are discussed. In this study, two kinds of blade profiles are being investigated: the original design, a constant thickness blade (CTB) and the proposed design, a variable thickness blade (VTB). The computation is performed by solving the 3D steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations with shear stress transport (SST) turbulence model in a non-inertial reference frame rotating with the turbine. The results show the interaction between tip leakage vortex (TLV) and suction surface of the blade is substantially reduced by using the VTB. The results reveal that entropy generation seems to give an advantageous effect of reducing the separation at the tip section of the VTB in the deep stall condition. At most, a 63.37% increase in torque coefficient and 72.8% increase in efficiency are achieved are achieved by the VTB in the deep stall condition. Moreover, a detail entropy generation and aerodynamic analysis show the main sources of losses are due to blade profile and secondary flows.
Keywords: Wells turbine; Wave energy; Variable thickness blade; Entropy generation analysis; Secondary flow (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217318558
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:143:y:2018:i:c:p:385-405
DOI: 10.1016/j.energy.2017.11.006
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().