Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC)
Jian Song,
Xue-song Li,
Xiao-dong Ren and
Chun-wei Gu
Energy, 2018, vol. 143, issue C, 406-416
Abstract:
Supercritical carbon dioxide (S-CO2) cycle is proven to be one promising alternative to provide high efficiency and has been developed for a wide range of energy conversion applications. Thermal efficiency of the S-CO2 cycle can be further improved by incorporating an appropriate bottoming cycle utilizing the residual heat. In this paper, an Organic Rankine Cycle (ORC) is added to the S-CO2 cycle for heat recovery. Different recuperative ratios of the topping S-CO2 cycle are considered and the influence of heat source initial temperature and total heat load on the bottoming ORC is evaluated. Two configurations of the S-CO2-ORC combined cycle system are presented, one without a pre-cooler and the other still with a pre-cooler, corresponding to total and partial residual heat recovery respectively. Though the entire residual heat recovery by the bottoming cycle could definitely increase the system thermal efficiency, the low ORC evaporation temperature and mediocre ORC performance leads to a limited improvement. While in the combined cycle system with a pre-cooler, higher ORC evaporation temperature could be attained and it has a remarkable effect on the ORC performance, even though part of the topping cycle residual heat is discharged to the ambient. The simulation results reveal that the S-CO2-ORC combined cycle system performance could be significantly improved through this parametric optimization. The recompression S-CO2 cycle with bottoming ORC is then analyzed and thermal performance is improved based on the previous optimization results. The bottoming ORC could effectively recover the residual heat of the topping S-CO2 cycle and increase the system thermal efficiency, thus it can be considered and applied in similar practical cases.
Keywords: S-CO2 cycle; ORC; Combined cycle; Parametric optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217318418
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:143:y:2018:i:c:p:406-416
DOI: 10.1016/j.energy.2017.10.136
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().