EconPapers    
Economics at your fingertips  
 

Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning based optimal control of hot water systems

Hussain Kazmi, Fahad Mehmood, Stefan Lodeweyckx and Johan Driesen

Energy, 2018, vol. 144, issue C, 159-168

Abstract: Energy consumption for hot water production is a major draw in high efficiency buildings. Optimizing this has typically been approached from a thermodynamics perspective, decoupled from occupant influence. Furthermore, optimization usually presupposes existence of a detailed dynamics model for the hot water system. These assumptions lead to suboptimal energy efficiency in the real world. In this paper, we present a novel reinforcement learning based methodology which optimizes hot water production. The proposed methodology is completely generalizable, and does not require an offline step or human domain knowledge to build a model for the hot water vessel or the heating element. Occupant preferences too are learnt on the fly. The proposed system is applied to a set of 32 houses in the Netherlands where it reduces energy consumption for hot water production by roughly 20% with no loss of occupant comfort. Extrapolating, this translates to absolute savings of roughly 200 kWh for a single household on an annual basis. This performance can be replicated to any domestic hot water system and optimization objective, given that the fairly minimal requirements on sensor data are met. With millions of hot water systems operational worldwide, the proposed framework has the potential to reduce energy consumption in existing and new systems on a multi Gigawatt-hour scale in the years to come.

Keywords: Deep reinforcement learning; Domestic hot water; Optimal control; Energy efficiency; Smart grid (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217320388
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:144:y:2018:i:c:p:159-168

DOI: 10.1016/j.energy.2017.12.019

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:159-168