Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM
Baoshou Zhang,
Zhaoyong Mao,
Baowei Song,
Wenjun Ding and
Wenlong Tian
Energy, 2018, vol. 144, issue C, 218-231
Abstract:
The natural ocean/river currents energy can be harvested using Flow Induced Motion (FIM) phenomena. The effect of damping-ratio and mass-ratio on Flow Induced Motion energy harnessing of a square cylinder are numerically investigated for Reynolds number 15500 < Re < 232000 (0.2 m/s < flow velocity <3.0 m/s). Four typical regions can be observed in the Flow Induced Motion responses, including Vortex Induced Vibration (VIV) Initial Branch, Vortex Induced Vibration Upper Branch, Vortex Induced Vibration-Galloping Transition and Galloping. Results indicate that as the velocity increases, the number of vortices shed per cycle increases, and the harnessed power increases without upper limit. The energy conversion efficiency increases up to the highest value until the Vortex Induced Vibration upper branch. Then, it starts decreasing and tends to a relatively small value in the galloping region. Increasing mass-ratio will shorten the velocity range of Vortex Induced Vibration. High damping-ratio has a negative impact on oscillation amplitude, but provides a boost for energy harnessing. In all tests, the power (143 W) is considerable at damping-ratio = 0.6. As the damping-ratio reaches up to 0.8 (nearing critical damping), galloping will no longer occur.
Keywords: Flow Induced Motion (FIM); Energy harnessing; Square cylinder; Vortex Induced Vibration (VIV); Galloping (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421732011X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:144:y:2018:i:c:p:218-231
DOI: 10.1016/j.energy.2017.11.153
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().