EconPapers    
Economics at your fingertips  
 

Ground heat storage beneath salt-gradient solar ponds under constant heat demand

José Amigo and Francisco Suárez

Energy, 2018, vol. 144, issue C, 657-668

Abstract: Salt-gradient solar ponds are energy collectors and storage systems that provide continuous heat supply. Although many studies have investigated the thermal behavior of solar ponds, few researches have investigated how heat lost to the ground beneath a pond can be recovered. Here, a one-dimensional transient model is used to study the thermal interaction between a solar pond with constant heat demand and the ground beneath it. The ground thermal properties were dependent on temperature and moisture. As groundwater depth affects soil moisture distribution, higher thermal conductivities are observed when the groundwater table is shallow. Further, the mean temperatures at the bottom of the pond decrease exponentially as the groundwater depth is shallower. For deep groundwater tables, marginal variations in the groundwater table depth do not have a considerable impact on the pond's bottom temperatures. The addition of an insulation layer is only beneficial when the water table is shallow. When the water table is deep instead, the ground below the pond acts as an additional heat storage volume, permitting more stable temperatures in the pond throughout the year, making it more suitable for a constant heat demand.

Keywords: Solar pond; Heat extraction; Solar energy; Ground heat storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217321047
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:144:y:2018:i:c:p:657-668

DOI: 10.1016/j.energy.2017.12.066

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:657-668