EconPapers    
Economics at your fingertips  
 

A numerical study on applying slot-grooved displacer cylinder to a γ-type medium-temperature-differential stirling engine

Wen-Lih Chen, Chao-Kuang Chen, Mao-Ju Fang and Yu-Ching Yang

Energy, 2018, vol. 144, issue C, 679-693

Abstract: In this study, the effects of heat transfer enhancement on engine performance by introducing slot grooves on walls of the displacer cylinder of a γ-type medium-temperature-differential Stirling engine have been investigated using computational fluid dynamics. Cases include smooth displacer-cylinder wall with heat source and heat sink extension on displacer cylinder circumferential wall and slot-grooved displacer-cylinder walls with grooves at different locations and numbers. The grooves are at displacer cylinder circumferential wall or at top and bottom walls. The slot grooves are classified into three types according to their locations. It is found that the circumferential wall is very important on engine's heat transfer behavior. Extending heat source and heat sink on this wall can improve indicated power but losing efficiency. Type-1 grooves enhance both positive and inadequate heat transfer, hence its effects on enhancing engine performance is mixed. In contrast, Type-3 grooves mainly enhance positive heat transfer thus yield improvement on indicated power and efficiency as the number of grooves increases. However, Type-2 grooves, which enhance heat transfer on regenerative wall, have been shown to yield the best performance. Compared with the engine without any heat-transfer-enhancement measure, a case with 96 Type-2 grooves improves indicated power up to 49%.

Keywords: CFD; Stirling engine; Heat transfer enhancement; Slot grooves (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217320297
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:144:y:2018:i:c:p:679-693

DOI: 10.1016/j.energy.2017.12.010

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:679-693