Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine
Muhammad Abdul Qyyum,
Wahid Ali,
Nguyen Van Duc Long,
Mohd Shariq Khan and
Moonyong Lee
Energy, 2018, vol. 144, issue C, 968-976
Abstract:
The advancement in hydraulic turbine (HT) technology was exploited for energy and cost benefits in natural gas liquefaction. Replacing the conventional Joule–Thompson (JT) valve with HT has the potential to recover the work input. This research investigated the effect of replacing the JT valve with HT in the energy efficiency enhancement of a single mixed refrigerant (SMR) process. To fully take the potential benefit of the HT, the proposed SMR schemes were optimized by using a modified coordinate descent optimization method, which was implemented in Microsoft Visual Studio environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed HT based SMR process could be saved up to 16.5% in comparison with the conventional SMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further reduce the energy requirement up to 25.7%. Exergy efficiency analysis also showed that whole exergy efficiency of the enhanced SMR process can be increased by about 11% as compared to the base case. The proposed HT based liquefaction technology can be extended to other natural gas liquefaction processes as an attractive option for enhancing the energy efficiency.
Keywords: LNG process; Natural gas liquefaction; SMR process; Hydraulic turbine; Energy efficiency enhancement; Exergy efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217321278
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:144:y:2018:i:c:p:968-976
DOI: 10.1016/j.energy.2017.12.084
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().