EconPapers    
Economics at your fingertips  
 

Understanding the thermodynamic and kinetic performances of the substituted phosphorus ylides as a new class of compounds in carbon dioxide activation

Hossein Sabet-Sarvestani, Mohammad Izadyar, Hossein Eshghi and Nazanin Noroozi-Shad

Energy, 2018, vol. 145, issue C, 329-337

Abstract: The investigation of thermodynamic and kinetic behavior of the carbon dioxide activation in the presence of the phosphorus ylides (P-ylides) is the main purpose of this study. Different substituents on the carbon atom of the P-ylides have different effects on the P-ylides performances in the carbon dioxide activation. The accessibility of the lone pair electrons on the carbon atom has a remarkable effect on the thermodynamic features of the reaction. A greater involvement of this carbon atom with the orbitals of the substituted groups decreases its reactivity in the CO2 fixation and Gibbs energy increment. A similarity in the energy levels of the involved orbitals of the carbon dioxide and P-ylides is another factor that affects the thermodynamics of the reaction. The proximity of the energy levels corresponding to the lone pair electrons on the carbon atom of the P-ylides and π*CO of the carbon dioxide has a good relationship with the ΔG values and progress of the reaction. However, the results of the activation strain model reveal that the activation energy of the reaction is influenced by the strain activation energy of CO2 and a greater distortion from the equilibrium geometry of CO2 increases the global energy barrier.

Keywords: Phosphorus ylides; Carbon dioxide; Activation strain model; Global electron density transfer; Molecular electrostatic potential (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217321928
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:145:y:2018:i:c:p:329-337

DOI: 10.1016/j.energy.2017.12.149

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:329-337