Effect of ambient temperature on the puffing characteristics of single butanol-hexadecane droplet
Yu Zhang,
Ronghua Huang,
Yuhan Huang,
Sheng Huang,
Yinjie Ma,
Shijie Xu and
Pei Zhou
Energy, 2018, vol. 145, issue C, 430-441
Abstract:
Puffing characteristics of BUT50 (50% n-butanol and 50% n-hexadecane by mass) were investigated using the droplet suspension technology under 638, 688 and 738 K. Experimental results showed that BUT50 underwent transient heating, fluctuation evaporation and equilibrium evaporation phases under all ambient temperatures. In the fluctuation evaporation phase, the fluctuation frequency of 738 K was higher than that of 638 K. (Dmax/D0)2 of 738 K was lower than that of 638 K. Easy bubble rupture led to high fluctuation frequency and low (Dmax/D0)2 at 738 K. Three turning points were found in transient temperature growth rate at 638 and 738 K. Four characteristic droplet temperatures were analyzed, including droplet temperatures at the start (T1) and end (T2) of transient heating phase, at (Dmax/D0)2 (T3) and at the end of total lifetime (T4). T2 was slightly lower and T3 was slightly higher than the boiling point of n-butanol. T4 was lower than the boiling point of n-hexadecane. Furthermore, the transient heating duration (tTH), fluctuation evaporation duration (tFE) and total lifetime (tTL) decreased with increasing ambient temperature. The reduction of tFE played an important role in the decrease of tTL. The percentages of tTH/tTL and tFE/tTL were stable with increasing ambient temperature.
Keywords: Ambient temperature; Puffing characteristics; Single droplet; Experimental study; Butanol-hexadecane blend (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217322016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:145:y:2018:i:c:p:430-441
DOI: 10.1016/j.energy.2017.12.158
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().