EconPapers    
Economics at your fingertips  
 

Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production

Daniel González Rodríguez, Carlos Alberto Brayner de Oliveira Lira, Lázaro Roger García Parra, Carlos Rafael García Hernández and Raciel de la Torre Valdés

Energy, 2018, vol. 147, issue C, 1165-1176

Abstract: Sulfur-Iodine thermochemical water splitting cycle coupled is one of the most promising methods for hydrogen production using a nuclear reactor as the primary energy source. However, there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the overall process. A computational model for the evaluation and optimization of the sulfur-iodine cycle coupled to a very high temperature reactor for nuclear hydrogen production was developed using a chemical process simulator Aspen HYSYS®. Some operational and design parameters of the cycle sections can be optimized in order to obtain the maximum hydrogen production and higher efficiency. The optimized sections of the flowsheet are coupled to a very high temperature nuclear system (TADSEA) through a Brayton gas cycle for power cogeneration. It is proposed a closed flowsheet for the sulfur-iodine thermochemical water splitting cycle coupled to an accelerator driven system, considering a Brayton cycle for the energy production. It is obtained an acceptable value of global efficiency for the initial operating condition. Several parametric studies are conducted using the flowsheet proposed to evaluate important operating parameters in the overall process efficiency.

Keywords: Thermochemical water splitting cycle; Hydrogen production; Process efficiency; Very high temperature nuclear system (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217320509
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:147:y:2018:i:c:p:1165-1176

DOI: 10.1016/j.energy.2017.12.031

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:1165-1176