Information gap decision theory to deal with long-term wind energy planning considering voltage stability
Abbas Rabiee,
Saman Nikkhah and
Alireza Soroudi
Energy, 2018, vol. 147, issue C, 451-463
Abstract:
This paper proposes a novel approach for long-term planning of wind energy considering its inherent uncertainty. The uncertainty of wind energy is handled via information gap decision theory (IGDT) method. Additionally, due to the importance of security considerations, loading margin is employed as an index of voltage stability to guarantee the security of power system. The operational constraints (such as power flow equations) in initial operation point considered along with those at the voltage collapse point, simultaneously. Accordingly, the IGDT-based voltage stability constrained wind energy-planning model is proposed that can be used for ensuring the safe operation of power networks. The main feature of this model is to handle the uncertainty of wind energy in the long-term wind energy planning via IGDT technique, by considering voltage stability constraints. In order to evaluate the capability of the IGDT technique for uncertainty handling of wind energy, the obtained results are compared with Monte Carlo simulations. To demonstrate the effectiveness of proposed model, it is applied to the New-England 39-bus test system. The obtained results validated the applicability of the proposed model for optimal wind energy planning. The proposed methodology could help wind farm investors to make optimal large-scale wind energy investment decisions.
Keywords: Information gap decision theory (IGDT); Loading margin uncertainty; Voltage stability; Wind energy; Wind energy planning (WEP) (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218300793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:147:y:2018:i:c:p:451-463
DOI: 10.1016/j.energy.2018.01.061
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().