EconPapers    
Economics at your fingertips  
 

Thermo-element geometry optimization for high thermoelectric efficiency

Yongjia Wu, Jihui Yang, Shikui Chen and Lei Zuo

Energy, 2018, vol. 147, issue C, 672-680

Abstract: The figure of merit of thermoelectric materials is temperature dependent, and thus the local compatibility factor changes significantly along the thermo-element length. A local optimization method to maximize the efficiency of a function graded thermoelectric generator was proposed and discussed in this paper. By adjusting the cross-sectional area and segment's thickness, the reduced current equaled the compatibility factor of the material at every local thermo-element layer. This method can use the full potential of existing materials by maximizing the efficiency at every local thermo-element segment. For such a TEG working in a temperature range of 300–1100 K, the efficiencies of P-type segmented Bi0.5Sb1.5Te3/BiSbTe/-PbTe/FeNbSb thermo-element and a N-type segmented Bi2Te2.79Se0.21/Bi2Te2.9Se1.1/SnSe/SiGe thermo-element were 25.70% and 21.73%, respectively, much higher than the conventional segmented thermo-elements. The overall efficiency of the device was more than 23.72%, making it a promising technology to harvest energy from medium and high-temperature industrial components. The optimized TEG can be fabricated by SLS/SLM technology.

Keywords: Compatibility factor; Efficiency; Thermoelectric generator; Selective laser melting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218301221
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:147:y:2018:i:c:p:672-680

DOI: 10.1016/j.energy.2018.01.104

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:672-680