Load following of Small Modular Reactors (SMR) by cogeneration of hydrogen: A techno-economic analysis
Giorgio Locatelli,
Sara Boarin,
Andrea Fiordaliso and
Marco E. Ricotti
Energy, 2018, vol. 148, issue C, 494-505
Abstract:
Load following is the possibility for a power plant to adjust its power output according to the demand and electricity price fluctuation throughout the day. In nuclear power plants, the adjustment is usually done by inserting control rods into the reactor pressure vessel. This operation is inherently inefficient as nuclear power cost structure is composed almost entirely of sunk or fixed costs; therefore, lowering the power output, does not significantly reduce operating expenses and the plant is thermo-mechanical stressed. A more attractive option is to maintain the primary circuit at full power and use the excess power for cogeneration. This paper aims to present the techno-economic feasibility of nuclear power plants load following by cogenerating hydrogen. The paper assesses Small Modular nuclear Reactors (SMRs) coupled with: alkaline water electrolysis, high-temperature steam electrolysis, sulphur-iodine cycle. The analysis shows that in the medium term hydrogen from alkaline water electrolysis can be produced at competitive prices. High-temperature steam electrolysis and even more the sulphur-iodine cycle proved to be attractive because of their capability to produce hydrogen with higher efficiency. However, the coupling of SMRs and hydrogen facilities working at high temperature (about 800 °C) still requires substantial R&D to reach commercialisation.
Keywords: SMR; Load following; Cogeneration; Hydrogen; Economics; Feasibility study (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218300471
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:148:y:2018:i:c:p:494-505
DOI: 10.1016/j.energy.2018.01.041
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().