Investigation on performance of an integrated SOFC-Goswami system using wood gasification
Javad Hosseinpour,
Ata Chitsaz,
Beneta Eisavi and
Mortaza Yari
Energy, 2018, vol. 148, issue C, 614-628
Abstract:
A new cogeneration system is proposed consisting of biomass gasification fed by wood, a solid oxide fuel cell (SOFC) and a Goswami cycle, which is a combination of a Kalina and an absorption refrigeration cycle. The Goswami cycle acts as a bottoming cycle to recover waste heat of the SOFC in order to produce cooling effect along with additional electricity. The combined cooling and power (CCP) system is modeled via Engineering Equation Solver (EES) and assessed in terms of energy (or first law) efficiency and exergy (or second law) efficiency. The effects on the system performance of varying several key parameters are examined via sensitivity assessments. It is found that raising the SOFC current density increases the produced electricity generation and cooling, but reduces the energy and exergy efficiencies of the system. It is also found that, as the SOFC inlet flow temperature and the turbine inlet pressure increase, the electricity generation rate and the energy and exergy efficiencies of the system rise to the optimal values of 481.6 kW, 60.2% and 34.7%, respectively, and then decrease. The exergy analysis also demonstrates that the gasification reactor, the boiler and the second air heat exchanger are the main irreversible components.
Keywords: Biomass gasification; Goswami cycle; Solid oxide fuel cell; Combined cooling and power; Thermodynamic analysis; Exergy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218301907
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:148:y:2018:i:c:p:614-628
DOI: 10.1016/j.energy.2018.01.162
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().