EconPapers    
Economics at your fingertips  
 

Forecasting China's electricity consumption using a new grey prediction model

Song Ding, Keith W. Hipel and Yao-guo Dang

Energy, 2018, vol. 149, issue C, 314-328

Abstract: A modified grey prediction model is employed to accurately forecast China's overall and industrial electricity consumption. To this end, a novel optimized grey prediction model, combining a new initial condition and rolling mechanism, is designed on the principle of “new information priority”. The previous initial conditions possess the inherent deficiencies of having a fixed structure and poor adaptability to changing raw data. To overcome these deficiencies, the new initial condition, possessing alterable weighted coefficients, is proposed. Its generating parameters can be optimally determined by employing a particle swarm optimization algorithm according to various characteristics of the input data. In addition, to demonstrate its efficacy and applicability, the novel model is utilized to predict China's total and industrial electricity consumption from 2012 to 2014 and then compared to forecasts obtained from a range of benchmark models. The two empirical results illustrate that the novel initial condition with dynamic weighted coefficients can better adjust to the features of electricity consumption data than the previous initial conditions. They also show the superiority of the newly proposed model over the benchmark models. Within this paper, the new model is used for predicting the future values of China's total and industrial electricity consumption from 2015 to 2020.

Keywords: Grey prediction model; Initial condition optimization; Rolling mechanism; China's total and industrial electricity consumption prediction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (51)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421830197X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:149:y:2018:i:c:p:314-328

DOI: 10.1016/j.energy.2018.01.169

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:314-328