Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment
Antzela Fivga and
Ioanna Dimitriou
Energy, 2018, vol. 149, issue C, 865-874
Abstract:
Pyrolysis is widely seen as a promising technology for converting plastic waste into a wax/oil product which can be used as a heavy fuel oil substitute or as raw material by the petrochemical industry. A pyrolysis plant with a capacity of 100 kg/h plastic waste is modelled in the process simulation software Aspen HYSYS. The production costs of the pyrolysis fuel product is estimated at £0.87/kg which is 58% higher than current market prices; therefore, a scaling-up analysis is also carried out to determine the plant capacity for which the pyrolysis process is economically feasible. The fuel production costs of the scaled-up cases considered are approximately 2.2–20.8 times lower than the existing market prices of residual fuel oil, indicating their economic feasibility. For the 1000 kg/h and 10,000 kg/h plant capacity cases the facility needs to operate approximately four years and one year respectively, to recover the capital investment, while the 100,000 kg/h case produces revenue and has a positive NPV within year one. A sensitivity analysis is also carried out revealing that the fuel production rate is the most sensitive parameter for the 100 kg/h plant, as well as the scaled-up plants.
Keywords: Pyrolysis; Aspen HYSYS; Techno-economic analysis; Plastic waste; Process modelling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218303220
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:149:y:2018:i:c:p:865-874
DOI: 10.1016/j.energy.2018.02.094
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().