Bottleneck of slab thermal efficiency in reheating furnace based on energy apportionment model
Demin Chen,
Biao Lu,
FangQin Dai,
Guang Chen and
Xihe Zhang
Energy, 2018, vol. 150, issue C, 1058-1069
Abstract:
To reveal distribution of slab thermal efficiency (STE) and its bottlenecks, a slab region thermal efficiency (SRTE) model and an STE model were established based on the energy apportionment model of a reheating furnace in this paper. The bottleneck index of the slab thermal efficiency (BISTE), which could be used to assess the influence of SRTE on STE in a particular region, was proposed. First, the regional energy balance equation was listed based on reheating furnace region division. Next, the SRTE and STE models were established. Second, the bottleneck of slab thermal efficiency (BSTE) was achieved through a partial correlation analysis (PCA) of billet samples, which were obtained according to the difference between billet loading temperature and its residence time in the reheating furnace. Next, the BISTE was advanced to accurately determine the BSTE. Finally, several suggestions or measures, that could improve SRTE, were proposed. The case study has demonstrated the validation of these models, and the BISTE was 42% (Preheating), 19% (Heating II), 18% (Soaking), 11% (Heating I) and 10% (Preheating & Heating), respectively. Therefore, the preheating zone is the key region used to improve STE.
Keywords: Reheating furnace; Slab region thermal efficiency; Slab thermal efficiency; Bottleneck index of slab thermal efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218303839
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:150:y:2018:i:c:p:1058-1069
DOI: 10.1016/j.energy.2018.02.149
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().