EconPapers    
Economics at your fingertips  
 

Bottleneck of slab thermal efficiency in reheating furnace based on energy apportionment model

Demin Chen, Biao Lu, FangQin Dai, Guang Chen and Xihe Zhang

Energy, 2018, vol. 150, issue C, 1058-1069

Abstract: To reveal distribution of slab thermal efficiency (STE) and its bottlenecks, a slab region thermal efficiency (SRTE) model and an STE model were established based on the energy apportionment model of a reheating furnace in this paper. The bottleneck index of the slab thermal efficiency (BISTE), which could be used to assess the influence of SRTE on STE in a particular region, was proposed. First, the regional energy balance equation was listed based on reheating furnace region division. Next, the SRTE and STE models were established. Second, the bottleneck of slab thermal efficiency (BSTE) was achieved through a partial correlation analysis (PCA) of billet samples, which were obtained according to the difference between billet loading temperature and its residence time in the reheating furnace. Next, the BISTE was advanced to accurately determine the BSTE. Finally, several suggestions or measures, that could improve SRTE, were proposed. The case study has demonstrated the validation of these models, and the BISTE was 42% (Preheating), 19% (Heating II), 18% (Soaking), 11% (Heating I) and 10% (Preheating & Heating), respectively. Therefore, the preheating zone is the key region used to improve STE.

Keywords: Reheating furnace; Slab region thermal efficiency; Slab thermal efficiency; Bottleneck index of slab thermal efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218303839
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:150:y:2018:i:c:p:1058-1069

DOI: 10.1016/j.energy.2018.02.149

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:1058-1069