Investigating the kinetics and biofuel properties of Alstonia congensis and Ceiba pentandra via torrefaction
Kehinde Oluoti,
Tharaka Rama K.C. Doddapaneni and
Tobias Richards
Energy, 2018, vol. 150, issue C, 134-141
Abstract:
Alstonia congensis (Ahun) and Ceiba pentandra (Araba) were chosen as representations of tropical wood in this study. The use of untreated wood for energy recovery could lead to a high loss in efficiency. One way of circumventing this in a developing country such as Nigeria is by exposing the fuel materials to a pre-treatment, such as torrefaction, prior to deployment. Attempts were made to improve the combustion properties of these resources and also to investigate their torrefaction kinetics. Derivations of kinetic parameters using Coats-Redfern method were discontinued due to inconsistent results. A non-linear regression method was then employed and the results compared to the average value obtained by the FWO method, which was considered more viable than the Coats-Redfern method. The kinetic parameters (Ea,A and n) derived by the regression method are 134.45 kJ/mol, 1.83E+13 min−1 and 2.15, respectively, for Araba and 143.38 kJ/mol, 1.90E+10 min−1 and 2.28, respectively, for Ahun. The thermal behaviour of the samples showed that a lower mass yield resulted in a lower energy yield, while the heating values increased with the temperature of torrefaction. The results obtained in this study affirm the possibility of obtaining an optimum conversion of these resources for energy recovery.
Keywords: Torrefaction; Alstonia congensis; Ceiba pentandra; Kinetic parameters; Mini-grid; Energy densification (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218303141
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:150:y:2018:i:c:p:134-141
DOI: 10.1016/j.energy.2018.02.086
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().