EconPapers    
Economics at your fingertips  
 

Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio

Ning Ma, Hang Lei, Zhaolong Han, Dai Zhou, Yan Bao, Kai Zhang, Lei Zhou and Caiyong Chen

Energy, 2018, vol. 150, issue C, 236-252

Abstract: The relatively low power coefficient restricts the wide application of vertical axis wind turbines (VAWTs). An effective solution to this problem is to design specific airfoil profiles which directly influence the capture ratio of wind power. The main aim of the present study is to develop an automatic airfoil profile optimization system to improve the power performance of a VAWT. A three-bladed high-solidity VAWT is adopted as the research object with its chord length, blade span and rotor diameter being 0.2 m, 0.8 m and 0.8 m, respectively. The optimization is conducted at a moderate tip speed ratio (TSR) with a value of 1.0 and the method of coupled CFD simulations with genetic algorithms is employed. The following points make this paper different from previous studies: (a) introducing Multi-Island Genetic Algorithm to optimize airfoils for VAWTs; (b) investigating the airfoil as part of the VAWT rather than as a single isolated body with 3D simulations. The results show that the power coefficient of the VAWT equipped with the optimized blades sensibly improves at all TSRs from 0.4 to 1.5 and the maximum growth rate of it occurs at TSR = 0.9 with a value of 26.82%. The integrated optimization system used in this paper provides an effective way to generate suitable airfoil profiles for given VAWTs with the goal to achieve higher power efficiency.

Keywords: Vertical axis wind turbine (VAWT); Airfoil profile; Optimization system; Multi-island genetic algorithm; Power coefficient (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218303499
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:150:y:2018:i:c:p:236-252

DOI: 10.1016/j.energy.2018.02.115

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:236-252